MicroExpNet: An Extremely Small and Fast Model For Expression Recognition From Frontal Face Images
نویسندگان
چکیده
This paper is aimed at creating extremely small and fast convolutional neural networks (CNN) for the problem of facial expression recognition (FER) from frontal face images. We show that, for this problem, translation invariance (achieved through max-pooling layers) degrades performance, especially when the network is small, and that the knowledge distillation method can be used to obtain extremely compressed CNNs. Extensive comparisons on two widely-used FER datasets, CK+ and Oulu-CASIA, demonstrate that our largest model sets the new state-of-the-art by yielding 1.8% and 12.7% relative improvement over the previous best results, on CK+ and Oulu-CASIA datasets, respectively. In addition, our smallest model (MicroExpNet), obtained using knowledge distillation, is less than 1MB in size and works at 1408 frames per second on an Intel i7 CPU. Being slightly less accurate than our largest model, MicroExpNet still achieves a 8.3% relative improvement, on the Oulu-CASIA dataset, over the previous state-of-theart, much larger network; and on the CK+ dataset, it performs on par with a previous state-of-the-art network but with 154x fewer parameters.
منابع مشابه
A New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients
In this paper, a new Hidden Markov Model (HMM)-based face recognition system is proposed. As a novel point despite of five-state HMM used in pervious researches, we used 7-state HMM to cover more details. Indeed we add two new face regions, eyebrows and chin, to the model. As another novel point, we used a small number of quantized Singular Values Decomposition (SVD) coefficients as feature...
متن کاملمدلسازی چهره با استفاده از میانگینگیری بر پایه دگردیسی تصویر و تجزیه مرتبه پایین
In video surveillance, the viewing angle of face with respect to camera, called angular occlusion (also referred to as head pose) will limit system’s ability in face recognition. In this paper, a method for angular occlusion elimination in face images is proposed, which is based on image morphing. The proposed method models a frontal face from a batch of images with different head poses b...
متن کامل3D Face Recognition using Patch Geodesic Derivative Pattern
In this paper, a novel Patch Geodesic Derivative Pattern (PGDP) describing the texture map of a face through its shape data is proposed. Geodesic adjusted textures are encoded into derivative patterns for similarity measurement between two 3D images with different pose and expression variations. An extensive experimental investigation is conducted using the publicly available Bosphorus and BU-3...
متن کاملAnalysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model
Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.07011 شماره
صفحات -
تاریخ انتشار 2017